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R E D U C T I O N  OF T U R B U L E N T  F R I C T I O N  

U N D E R  LOCAL S U R F A C E  H E A T I N G  

A. V. Kazakov, M. N. Kogan, and A. P. Kuryachii UDC 532.526 

In t roduc t ion .  The drag-reduction method based on heating of the surface of a flat plate near its 
leading edge was first suggested by Kazakov et al. in [1]. The total friction drag of the plate was reduced in 
this case by increasing the stability of gas flow heated near the leading edge and moving afterward over a 
colder surface. This resulted in a considerable elongation of the laminar flow region in the boundary layer. The 
laminar-turbulent-transition delay method proposed by Kazakov et al. in [1] was experimentally validated by 
Belov and Struminskii, et al. in [2, 3]. 

Nevertheless, for fairly large values of the characteristic Reynolds number, the turbulent part of the 
boundary layer is much more extended than the laminar part, and further reduction of the viscous drag is 
possible if one decreases turbulent friction. Thus, the search for methods of reducing the friction drag using 
various actions on the turbulent boundary layer is of great importance [4]. 

The turbulent friction on an isothermal surface with temperature T* higher than the recovery 
temperature T~* is known to be smaller than on an adiabatic surface in flow [5, 6]. However, uniform heating 
of the entire surface involves considerable technical problems, in particular, the necessity of ensuring a reliable 
heat insulation for a large area to prevent heat losses inside the body. In addition, in this case the energy 
supplied for heating of the boundary layer exceeds the gain due to the friction-drag reduction. 

In the present paper, the friction in a fully developed turbulent boundary layer on a flat plate is studied 
as a function of energy supply to one or several local regions of the surface, the remaining part of the surface 
being thermally insulated. In this case, as will be shown below, the integral friction coefficient is smaller by 
approximately a factor of 2 than in the case of heat energy supplied to the gas in the boundary layer and 
distributed uniformly over the entire surface. 

S t a t e m e n t  of t he  P r o b l e m .  Let us consider an inviscid heat-conducting gas flow past a flat plate 
with velocity u* ,  density p* ,  and temperature T* at infinity. It is assumed that at a certain distance 
l* from the plate leading edge the laminar boundary layer becomes turbulent, and the place where heat 
is supplied to the boundary layer is located in the developed-turbulent-flow region and has the length h*. 
The parameters of an undisturbed turbulent boundary layer are completely determined by the Reynolds 
number Re0 = p*u~O~/ la*  ( p *  is the dynamic viscosity in the incoming flow and 0~ is the momentum 
thickness immediately upstream of the heated region) and, as follows from calculations, are independent of 
the Reynolds number of the transition, beginning with Re = p * u ~ l * / p * .  For this reason, the choice of the 
Reynolds number is not essential, because it is responsible only for the position of the beginning of the heating 
region determinecl by a specified value Re0. 

The temperature along the surface of the heating region and behind it markedly changes. Therefore, to 
describe the turbulent boundary layer, one should use turbulence models that allow a correct consideration of 
the hereditary effects in this boundary layer which are most clearly manifested in the high-gradient regions. 

An adequate description of turbulent flows in these regions is difficult for several reasons. It is known 
that in the regions with high longitudinal gradients some points can appear where the Boussinesq hypothesis, 
which is used to close equations in numerous turbulence models, is violated. 
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One should remember that most of the widely used two-parametric and more complicated turbulence 
models contain empirical constants and functions which were selected by comparing numerical results with 
experimental data obtained for an incompressible gas flow past a thermally insulated or isothermal surface 
[7, 8]. Later on, van Driest proposed to extend these models to compressible heat-conducting gas flows based on 
the assumption that the momentum and energy transfer processes are similar [9]. Only recently have turbu!ence 
models been developed which are suitable for an adequate description of the turbulent boundary layer in 
compressible gas with intense heat transfer over the immersed surface [10]. However, it is not conclusively 
proved that they can be efficiently used to describe the characteristics of a turbulent boundary layer on an 
essentially nonisothermal surface, in particular, with a stepwise variation in its temperature and with regions 
of high longitudinal temperature gradients and other functions of the flow, which was experimentally studied, 
for instance, by Carvin et al. in [6]. 

Nevertheless, there are simple algebraic turbulence models that,  notwithstanding their locality, simulate 
fairly well parameters such as the friction coefficient and heat flux even in a nonequilibrium boundary layer 
with rather high gradients of the parameters along the surface. At the same time, their use requires much 
smaller computational resources. In particular, the two-layer algebraic model of Cebeci and Smith [11] yields 
a good agreement with experiment for boundary-layer calculations on an essentially nonisothermal surface 
[12]. This fact gives us hope that at least qualitatively reliable results can be obtained when this model is 
used to calculate the flows with heat supply, which are considered in the present paper. 

For numerical calculations, it is more convenient to represent the turbulent boundary-layer equations 
in dimensionless form, which allows one to take into account considerable changes in the boundary-layer 
thickness caused by surface heating. For this purpose, the local displacement thickness of the boundary layer 
6" which is a function of the longitudinal coordinate x is chosen as a characteristic vertical coordinate. In this 
case, the dimensionless coordinate of the external boundary of the computation domain ye remains constant 
under any action on the boundary layer, which facilitates substantially numerical calculations. 

The dimensionless variables are introduced according to the relations 

x* y* 6" u* 

~ =  -i:' v -  i,8(~)' 8 = - F '  ~ =  , "  Uoo 

v* yu d5 p* T* t~* 
- - -  , T =  t ~ =  �9 . V u * 8  5 dx '  P = p *  T * '  I%o 

Here u* and v* are the longitudinal and transverse velocity components; T* is the temperature, K; and the 
x* coordinate is counted off from the leading edge of the plate. 

In this case, the system of equations and boundary conditions for the turbulent compressible boundary 
layer has the form 

O---2+-gd-~ + Oy =o, ae820y ~ + m  N = p ~ + p V ~ ,  p = ~ ,  

ReS~ 0y + ~ ~ = f'~ ~ + f,V ~ - ( ~ -  1) Moo aeS~ ~,0y/ 

OT 
y = o :  ~ = o ,  v = o ,  ~- -~-+(~- l )M~Re~6qw=0 (~o~<z~<zo+h), (1) 

o y  

OT 
oy = o (z >1 xo + h), 

y = ye : u = 1, T 1, a = 0.72, at = 0.9, # : T3/2 1 + l14 /T~  = 0e = 1.4, 
T + l 1 4 / T * '  

* *3  where qw is the heat flux referred to p~uoo, Moo is the Mach number in the incoming flow, x0 is the coordinate 
of the beginning of the heating region, and h = h*/l* is its nondimensional length. 

According to the two-layer model of [11], the turbulent viscosity #t in the above variables is described 
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by the formulas 

ttti = 5Rep ~yy (ky) 2 1 + exp - -  ~ "/tT, 0 ~ y ~ Yl~yer, 

(2) 

y+ : y P-t L [5Re (t:; 0u~li/2'Oy]J A+ : 26, #,0 : 5Repa / ( 1 -  u)dyiTtT, Ylayer<~y <~ Ye. 
0 

Here the subscripts i and 0 refer to the inner and outer boundary-layer regions, respectively, and subscript w 
to the immersed surface (wall). 

Formula (2) includes the coefficients defined by the relations 

1.55 
ot=0 .0168  1 +-----H' I - I = 0 . 5 5 1 1 - e x p ( - O . 2 4 3 Z ~ / 2 - O . 2 9 S Z l ) ] ,  

Z1 = R e 0 / 4 2 5 -  1 for Re0 > 425, (3) 

7=[l+5"5(y/Y~ ")"=l-exp [-3ReO'66(x-l)2] ' c  c=60+4"86M~>92 
(y0 is the y coordinate of the point where u = 0.995). 

The boundary between the inner and outer regions of the layer Y l a y e t  is determined from the condition 
of continuous turbulent  viscosity. 

The velocity and tempera ture  profiles of an undisturbed boundary layer before the heating region 
are the initial conditions for s tudying the thermal effect on the boundary layer. To obtain these profiles, a 
self-similar flow in the laminar boundary layer was calculated. This flow is used as the initial conditions for 
x = 1. System (1)-(3) is then solved up to the cross section x = x0 where the specified value Re0 is reached. 

The nonlinear problem (1)-(3) was solved numerically by the iteration method  on the basis of the 
numerical approach of [13] with second-order accuracy along the y coordinate and with first-order accuracy 
along the x coordinate. The  function 5(x), which enters the problem, is found in each cross section of the 
boundary layer using the iteration process 

Ye 

5(0 = 6(i-1)yd, Yd = / ( 1  -- pu)dy (i = 1, 2, . . . ) ,  5(~ = 5(x - Ax), 
0 

where i is the iteration number  and 5(x - Ax) is the thickness 5 in the previous cross section. 
C a l c u l a t i o n  R e s u l t s .  The  turbulent  boundary layer was calculated for Moo = 2. The initial velocity 

and tempera ture  profiles of the developed turbulent  boundary layer in cross section x0 corresponded to 
Ree = 5000. Calculations were performed for a completely thermally insulated surface and also in the presence 
of two (case 1) and ten (case 2) local regions of surface heating, and the total energy supplied to the flow and 

_* . *3#*  referred to t,~Uoo, was Q = 5-10 -4. For each heating region Ax ~< h, a constant heat flux qu, = Q/(hN) was 
assigned, where N is the total number  of heating regions of the plate surface which is subject to the condition 
hN = 100 00. 

Figure 1 shows the distributions of the relative magnitudes of the local friction coefficient C//C/o, where 
C/0 is the local value of the turbulent  friction coefficient for a thermally insulated surface without energy 
supply. In all figures, the ratio of the distance from the beginning of the first heating region X = x - x0 
to the m o m e n t u m  thickness in the cross section is plotted on the abscissa x0; the dashed curve corresponds 
to two surface-heating regions (the length of each section is h = 5000) located one after the other, so that 
the beginning of the second region is at a distance of 250 00 from the beginning of the first region (case 1); 
the solid curve describes case 2 (energy supply in ten identical heating regions with length h = 1000), the 
beginnings of two neighboring heating regions being shifted with respect to each other at a distance of 50 00. 
The dot-and-dash curve in Figs. 1-4 shows the distribution of the corresponding parameter  in the boundary 
layer that  is not disturbed during heating. 

As is seen from Fig. 1, at the beginning of each heating region the local friction coefficient increases, 
as compared with the friction on a completely thermally insulated surface, and only if the heating region 
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is fairly long does the friction begin to decrease directly in the heating region itself, as in the case of two 
heating regions. On the thermally insulated surface which follows directly the region of energy supply to the 
flow, the friction further decreases. Farther downstream, the local friction coefficient on the thermal insulated 
surface begins to grow slowly, approaching monotonously the values that would occur in the corresponding 
cross sections of the boundary layer on a completely thermally insulated surface without energy supply. 

This effect of energy supply on the friction coefficient, determined in the above dimensionless variables 
by the formula 

=  -Ri t'(Tw) N w' (4) 

is mainly explained by the action of two competitive factors, namely, by the changes in viscosity and 
displacement thickness of the boundary layer under surface heating. Physically, the numerical results obtained 
are interpreted as follows. With an increase in the surface temperature, the dynamic viscosity also grows, 
which should give rise to an increase in C I. On the other hand, the growth of the surface temperature Tw and 
heating of the near-wall gas jets reduce the gas density in the boundary layer, thus displacing the streamlines 
farther from the surface, reducing the gradient of the longitudinal velocity component u~w = (Ou/Oy)w, and 
increasing the boundary-layer displacement thickness 5(x). 

The growth of the friction coefficient at the beginning of the heating region in all the cases considered is 
obviously explained by the prevailing effect of the first factor - -  the temperature dependence of the viscosity 
coefficient. Indeed, as is shown in Fig. 2, the temperature in the heating regions first increases quite rapidly, 
which leads to rapid heating of the near-wall flow jets and a higher molecular-viscosity coefficient #(Tw). 
As the boundary layer is warmed up, the second factor starts to play a major part. This factor can become 
dominant even in the region of increasing surface temperature, as happens in the case of an extended heating 
region (case 1), indicated by the dashed curve in Fig. 2. A sharp reduction of the surface temperature behind 
the heating region~ leads to a considerable decrease in the dynamic viscosity. This gives rise to a considerable 
reduction of C I in passing to the insulated section of the surface immediately adjacent to the heating region. 

Figure 3 shows the effect of surface heating on the gradient of the longitudinal velocity component 
uyw. Evidently, the velocity gradient in dimensionless variables decreases sharply in the heating region, 
reaching its minimum at the end. Since the dimensionless velocity gradient can be represented as Ou/Oy = 
(5*/u*)Ou*/Oy*, its reduction indicates that the dimensional velocity gradient decreases more rapidly than 
the boundary-layer displacement thickness grows. This is a natural consequence of the fact that, first of all. 
the flow jets in the immediate vicinity of the wall are heated and expanded, the near-wall velocity gradient 
decreases sharply, while the integral (total) displacement thickness increases more smoothly (Fig. 4). Since the 
wall is assumed to be thermally insulated downstream of the heating region, the overall heat supplied to the 
boundary layer remains in it, gradually heating the gas layers, which are more and more distant from the wall. 
along with the external-flow gas portions that enter the boundary layer. Thus, the displacement thickness 
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slowly approaches asymptotically the value for a heated wall (Fig. 4), whereas the near-wall velocity gradient 
responds more rapidly to heat removal from the near-wall flow jets to the external part of the boundary layer 
(Fig. 3). 

In other words, the behavior of the friction coefficient is explained by a competition between the 
viscosity variation as a function of the wall temperature and the variation of a certain effective (rather than 
the total) thickness of a more heated near-wall part of the boundary layer. Precisely, both the sharp increase 
in this effective displacement thickness in the heated region and its slower decrease in the thermally insulated 
part of the surface with a simultaneous marked reduction of the wall temperature lead to the fact that using 
the local heating, one can obtain a twofold reduction of drag, as compared with a uniformly heated surface 
(Fig. 5). Figure 5 shows the relative integral friction coefficient ACF/CFo determined by the relations 

z0+X zo+X 

f C o= ] C od . 
zO xO 

From the viewpoint of a decrease in the total friction drag of the turbulent boundary layer, the behavior 
of the quantity ACF/OFO is of most interest at large distances downstream of the region where some extra 
energy is introduced into the boundary layer in this or that manner. The dot-and-dash curve in Fig. 5 refers to 
the relative integral friction coefficient ACF/CFO for a uniformly distributed supply of fixed energy Q along 
the plate surface from the initial cross section of the boundary layer z0 to the current cross section X. 

From Fig. 5 it follows that  up to fairly large distances from the heat-supply region to the boundary 
layer, the integral decrease in friction for local heat supply is larger approximately by a factor of 2 compared 
with uniform surface heating. For uniform heat supply, the effective thickness of the boundary layer increases 
more slowly and is accompanied by a simultaneous growth of the near-wall gas viscosity, which seems to make 
the uniform heat supply less efficient. One can hope that a more rapid heat supply (namely, a smaller length 
of heating regions and an increase in their temperature) simultaneously with an increasing number of these 
regions will make the heat supply to the flow more efficient. 

In fact, as is seen in Fig. 5, a larger number of heating regions located at a fixed part of the surface 
and their smaller length give rise to a slower reduction of ACF/OFO as one moves far away from the point 
of energy supply to the flow. The data presented testify to the fact that periodical local heating gives rise to 
the "accumulation" of thermal impacts on the boundary layer which are realized in each short heating region. 
This circumstance allows one to hope that CI/Clo values which are much less than unity can be reached on 
a thermally insulated surface in the relaxation wake behind the heating regions even at fairly large distances 
downstream if these regions are sufficiently large in number. This ensures a higher energy efficiency of the 
proposed thermal turbulent-friction reduction method. 

It should be noted, however, that reducing the heating-region lengths and increasing the longitudinal 
temperature gradients and the other characteristics of the boundary-layer makes one less confident that both 
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the turbulence model used and, probably, the boundary-layer equations can be utilized to draw quantitative 
conclusions, at least in the boundary-layer regions close to very short heating regions. One can note the 
general trend to increasing the efficiency of friction-drag reduction under local heat supply. However, further 
optimization of heating and the final conclusions on the applicability of the proposed method for drag reduction 
should be postponed until the accuracy of the first results described above is experimentally verified and a 
turbulence model adequate for the problem is chosen. 

In conclusion, we note that fairly high gradients of the boundary displacement thickness along the 
surface are observed in the heating region under local heat supply to the boundary layer, as is seen from 
Fig. 4. For this reason, the effect of the viscous-inviscid interaction on the friction-coefficient distribution can 
be profound. If the energy is supplied to the boundary layer on a fairly large number of heating regions, the 
boundary-layer displacement thickness has a wavy shape. The interaction of an external inviscid flow with 
such an effective wavy surface can stipulate an additional reduction of the friction drag [14]. Since in this 
case the actual surface experiencing the flow pressure remains flat, a possible decrease in the viscous drag is 
not accompanied by the occurrence of the pressure drag, as occurs in the case for the flow past actual wavy 
surfaces [14]. This effect is the subject of a separate study. 
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